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FOREWORD

This research was conducted for the Amy Materiel Command (AMC), Army Helicopter
Improvement Program (AHIP) at St. Louis, MO, under Reimbursable Orders DODA 73-9-P600S dated
June 1989 and 73-8-P6008 dated October 1990. The technical monitor was Ken Schaedler (PM AHIP).

The work was conducted by the Acoustics Team of the Environmental Division (EN) of the U.S.
Army Construction Engineering Research Laboratory (USACERL). Dr. Paul D. Schomer is Acoustics
Team Leader. Dr. Edward W. Novak is Acting Chief of USACERL-EN. The USACERL technical editor
was Gloria J. Wienke, Information Management Office.

LTC E.J. Grabert, Jr. is Acting Commander of USACERL, and Dr. L.R. Shaffer is Director.
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OPERATIONAL NOISE DATA FOR OH-58D ARMY HELICOPTERS

1 INTRODUCTION

Background

Research at the U.S. Army Construction Engineering Research Laboratory (USACERL) on Army
noisc problems has centered on predicting and assessing the effect of noise on and adjacent to Army
facilities. Blasts, vehicles, fixed sources, and rotary-winged aircraft have been identified as the major
noisc problems. With the increased pressure of residential development, the Army has instituted the
Installation Compatible Use Zone (ICUZ) program.l Like the Department of Defense’s (DOD)
Construction Criteria manual and Air Installations Compatible Use Zone (AICUZ) program, the ICUZ
program defines land uses compatible with various noise levels and establishes a policy for achieving such
uses.> These documents describe three noise zones that restrict land use in varying degrees to ensure
compatibility with military operations. The ICUZ program stresses the Army unique noise sources such
as blasts and rotary-winged aircraft.

The ICUZ/AICUZ programs use source emission data with sound propagation and human/
community response data to generate noise zone maps. The OH-58D helicopters were added to the
Army'’s inventory after the previous investigations; their noise emission data are required by the Army
for ICUZ and environmental assessment.

Objectives
The objectives of this study were to gather "close-in" (within 500 ft) noise source emission data

on the OH-58D helicopter, to normalize this source spectra to 250 ft for use in noise maps, and to develop
sound equivalent level (SEL) versus distance curves for comparison with other helicopter data.

Approach

Previous research studied the repeatability of rotary winged aircraft source emissions and presented
recommendations for statistical validity and a revised microphone layout for data gathering.* That revised

' Army Regulation (AR) 200-1, Environmental Protection and Enhancemens, Chapter 7 (U.S. Army Corps of Engineers
{USACE], 15 June 1982).

2 DOD 4270.1-M, Construction Criteria (Department of Defense [DOD], 1972); DOD Instruction 4165-57, Air Installations
Compatible Use Zones (DOD, 1973). :

* P.D. Schomer, Aaron J. Averbuch, and Richard Raspet, Operational Noise Data for the UH60A and CH47C Army Helicopters,
Technical Report N-131/ADA118796 (U.S. Army Construction Engineering Research Laboratory [USACERL), June 1982);
P.D. Schomer, et. al, Operational Noise Data for CH47D and AH-64 Army Helicopters, Technical Report N-88/04/
ADA191059 (USACERL, June 1982).

" A metric conversion table is provided on page 29.

* B. Homans, L. Liule, and P. Schomer, Rotary Wing Aircraft Operational Noise Data, Technical Report N-38/ADA051999
(USACERL,1978); P.D. Schomer, Rotary-Winged Aircraft Noise Measurements: Analysis of Variations and Proposed
Measurement Standards, Technical Report N-184/ADA146207 (USACERL, September 1984).
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layout and recommended methodology were used to measure noise emissions of OH-58D helicopters at
High Bluff Field, Fort Rucker, AL.

Mode of Technology Transfer
The data developed for the OH-S8D helicopter will be entered in the Integrated Noise Contour

System data base and will be immediately available for use by the Army Materiel Command, U.S. Army
Environmental Hygiene Agency, and other DOD organizations.




2 DATA COLLECTION

Helicopter Operations

The OH-58D noise measurements, recorded at Fort Rucker, AL, were based on the dynamic
operations listed in Tables 1 and 2. In all, 8 sets of up to 31 operations were measured and recorded over
4 days of testing (26 and 27 October and 14 and 15 November 1989). Cameras with graduated poles as
references were used to determine the position of the helicopter (accurate to £ 1 ft) as it flew over the
center of the microphone array. Figure 1 shows the layout at Fort Rucker, AL.

The helicopter performed level flyovers (LFOs) at 40 knots, 70 knots, 100 knots, and maximum
speed at 300 ft above ground level (AGL) and at 70 knots and 100 knots at 1000 ft AGL. The ground
at the center point of the circular microphone array was designated as O ft AGL. In-ground-effect (IGE)
hovers and out-of-ground-effect (OGE) hovers and zero-pitch engine idle operations were also executed
above the center point of the microphones.

The pilots were instructed to maintain straight, level, steady flight for at least 1.5 nautical miles
(nmi) away from the measurement microphones. All teardrop tums, other ancillary maneuvers, and
preparations for actual dynamic operation were performed beyond 1.5 nmi. Maneuvering at this distance
allowed the pilot to stabilize the aircraft and provided enough time and distance for 10-decibel (dB) down-
points to be measured and recorded on magnetic tape when the operation was level flyovers. The first
10-dB down-point is the first time the A-weighted signal increases to within 10 dB of the maximum A-
weighted sound level of the entire flyover. The last 10-dB down-point is the last time the A-weighted
signal decreases minus 10 dB below the maximum A-weighted sound level. Landings began at 300 ft
AGL with the aircraft facing into the wind and terminated at the center of the microphone array.

Static operations consisted of zero-pitch engine idle, IGE and OGE hovers. These measurements
were performed over a grassy area at the center of the microphone array. IGEs were performed with the
aircraft at a stabilized position between 1 and 5 ft above the ground. OGEs were performed at 1.5 rotor
diameters AGL.

The pilot of each flight logged all helicopter operations information. Typical log entries are shown
in Appendix A.

Microphone Placement

The layout for the six microphones is shown in Figure 1. This arrangement allows adjustment of
the helicopter flight path depending on the wind direction. The microphone elements were 4 ft high and
500 ft from the center of the circle at 60-degree intervals so that two microphones were directly under-
neath the flight path and the other four were at equal distances (500 ftesin 60 degrees = 433 ft) to either
side of the flight path. The slant (closest approach) distance from the helicopter operating at 300 ft AGL,
to the microphone is 527 ft. To better compare with previous measurements, it would have been desirable
to arrange the sideline microphones at a slant distance 500 ft away from the flight path; however, the
requisite 462 ft diameter array would have placed some microphones above hard surfaces at the Fort
Rucker site, hence the choice of the 500 ft diameter array.




Table 1

Operations for Data Sets 1 Through 4

Run Number Operation Altitude (ft) Speed(knots)

1 Takeoff (TKF) 300 40
2&3 Level flyover (LFO) 300 100
4&S5 LFO 300 40
6&7 LFO 300 70
8&9 LFO 300 Max
10& 11 LFO 1000 70
12& 13 LFO 300 100
14 Landing (LND) 300 40

15 Idle 0 0
16 IGE 2 0

17 OGE 50 0

18 TKF 300 40

19 & 20 LFO 300 40
21 & 22 LFO 300 Max
23 & 24 LFO 1000 70
25 & 26 LFO 300 100
27 & 28 LFO 300 70
29 & 30 LFO 300 100
31 LND 300 40

Measurement Instrumentation

The acoustical instrumentation consisted of six B&K 4149 quartz-coated, 1/2-in. microphones on B&K
4921 outdoor microphone systems with windscreens. The sound pressure from each operation was
recorded through the microphones onto Digital Audio Tape (DAT) using Panasonic SV-250 recorders.
The six microphones were connected above ground, using electronically balanced and shielded twisted pair
cabling, to a truck modified to be a mobile field acoustics laboratory.

Ground Tracking System

Cameras were used to mark the position of the aircraft when it flew over the middle of the
microphone array. These cameras focused on uniformly graduated poles mounted in the line of sight to
the center of the array and clevated to frame the aircraft over the array center at 300 ft AGL. Position
information was determined by examining the photographs, which showed the aircraft from the two
camera positions simultaneously. Three camera locations were chosen such that two of three cameras
always framed a clear picture of the helicopter without interference from the sun. Use cf (he radar




Table 2

Operations for Data Sets 5 Through 8

Run Number Operation Altitude Speed(knots)
1 TKF 300 40
2&3 LFO 300 70
4&5 LFO 300 100
6&7 LFO 300 Max
8&9 LFO 1000 100
10& 11 LFO 300 40
12 & 13 LFO 300 70
14 LND 300 40

15 IDLE 0 0

16 IGE 2 0

17 OGE 50 0

18 TKF 300 40

19 & 20 LFO 300 70
21 & 22 LFO 300 Max
23 & 24 LFO 1000 100
25 & 26 LFO 300 100
27 & 28 LFO 300 40
29 & 30 LFO 300 70
31 LND 300 40

altimeter in this aircraft significantly improved the stability and accuracy of level flight in comparison to
previous tests with aircraft not so equipped. For this reason, no additional height measurements were
taken.

Calibration

At the beginning of each tape, the 1000-Hz electrostatic actuator built into the B&K 4921 microphone
systems was used to record a known level on the tape. The electrostatic actuators were tested with B&K
4220, 124-dB pistonphones before and after the entire measurement program. (Calibration of the
electrostatic actuator with the B&K 4220 allows one to establish an absolute calibration value for each
actuator.) Calibration was checked at the end of each measurement period.




271.0
)

AIRCRAFT

e flight pathv

\

Figure 1. Test Site Layout.
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3 DATA REDUCTION AND ANALYSIS

Camera Data

The graduated pole in the foreground of each photograph allowed calculation of altitude and lateral
variation over the center of the flight track because the camera angle, distance to the pole, and distance
between graduations on the pole were known (Figure 2).

Negatives of each helicopter were projected on the screen of a microfiche reader, measurements
were taken in relation to the pole, and data were encoded into a microcomputer for further calculation and
analysis. Given the information supplied by the pictures, algorithms were written that located the
helicopter in three dimensions at the time the cameras were activated. The slant distance to each of the
six microphones in the array was calculated based on the position of the helicopter in space and its
forward direction.

Acoustical Signal Analysis

Much of the acoustical analysis performed on the signals was accomplished under automated control
of four (two dual-channe! and two single-channel) Larson Davis model 3100 Real Time Analyzers (RTAs).
Each RTA was programmed to sample the microphone signals throughout a given helicopter operation
or maneuver (e.g., flyover, hover) and intemally store 1/3-octave band sound pressure levels for every 0.5
second of the operation. At the end of each operation, each RTA scanned its stored spectra and performed
further processing according to the specific type of flight operation being performed. For all motionless
operations (i.e., hovers and engine idlings), the RTA reported average spectral levels; for all other flights
(i.e., take-offs, flyovers, and landings), the RTA reported maximum and average spectra to the controlling
computer. The spectra were then ‘‘adjusted’’ to compensate for measurement (or flight) conditions that
differed from an ideal standard and were averaged by operation type. The average reference spectra were
used to predict the A-weighted sound level as a function of distance from the operation.

Electronic Calibration

The band-to-band response of the RTAs was equalized before the measurements by running each
of the RTAs through autocalibration for approximately 10 minutes. In autocalibration, the RTA uses an
intemmal pink noise source for its input and adjusts the 1/3-octave band levels so they report an equal
energy response per unit frequency between bands.

The entire electronic system was then calibrated at 1 kHz by adjusting the value displayed by the
RTA for the calibration tone t0 match the known microphone calibrator level (90 dB for all new
microphone units and approximately 90 dB for recalibrated microphones). The RTAs automatically scaled
all other 1/3-octave bands by the same factor. This procedure assumes that all other equipment in the
measurement and recording system had a flat response over the frequency range 10 Hz to 10 kHz.

Indeed, manufacturer’s specifications indicate a flat equipment response within a 2 dB tolerance,
but researchers did not perform rigorous tests to prove this. The electronic system noise and ambient
acoustic noise was sampled and analyzed by the same procedures used for static flight operations, i.., for
hovers and idle, with the aircraft far away from the test site. Before each set of tests the average

11
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Figure 2. Typical Camera Site.

“background” spectrum was stored in the RTAs as “user” frequency weighting curves for later use in
flyover analysis.

Operation of the RTA

The RTA digitally synthesizes consecutive 1/3-octave band filter responses of the input signal. Each
1/3-octave signal is further processed within the RTA by an RMS (Root-Mean-Square) detector, an
exponential decay response averager, and a logarithmic detector (for decibel results). Every 0.5 second
during sampling, the RTA stores a new spectrum in a set of intemal memory registers capable of holding
about 240 spectra. The spectra stored there were the slow-time-average response and the 1/3-octave band
sound pressure levels. A slow-time-average response filter contains an integrator circuit with a decay time
constant of 1.0 second. Thus, the slow-time-average sound level as a function of time can be determined

by:

2
1o p (W)
L,pi® = 10 log, { I ety [Eq 1]

where Tt = 1.0 second
Yy = time
p(y) = the i 1/3-octave band frequency-weighted sound pressure at time .
p, = the reference sound pressure, 20 pPa (micropascals).

The center frequency, f,, of the i® 1/3-octave band can be found from the relation:

f, = 10" Hz. [Eq 2]
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Hover Signal Analysis

For static operations, the RTAs were programmed to store slow-time-averaged 1/3-octave band
sound pressure levels in the internal registers and perform "energy averages" Log-Mean-Antilog (LMA)
averages of the bands over the entire measurement interval (usually 60 seconds). The LMA average may
be written:

N
L, - 10 log,dL 3 104° [Eq 3]
N j.]
where N = the number of levels L, to be averaged
j = aparticular 1/2 second of the measurement interval.

Note that an LMA average of sound pressure levels is equivalent to an average RMS pressure and
therefore represents the same measure of energy as an RMS pressure average. The average spectra were
reported to and stored on the controlling computer.

Flyover Signal Analysis

During the flyover measurements, the RTAs were triggered to begin and end sampling data at
specified times and positions along the flight. Under control of the ‘‘Pass-by’’ program (contained in
read-only-memory chips in the RTAs), the maximum slow-time-average 1/3-octave band spectrum and
the average level per band between the minus 10 dB times was determined. The Pass-by program applied
both ‘‘user’’ and A-weighting frequency response curves to each 1/2 second spectrum and summed the
spectral components to obtain an estimate of the true slow-time-average signal level every 1/2 second.
The program searched these values of the slow A-weighted signal to find the 1/2 second time for which
the signal reached its maximum value and the time before and after maximum at which the signal fell to
more than 10 dB below maximum. The unweighted spectrum for this maximum 1/2 second was reported
to the controlling computer. The Pass-by program further performed an LMA average over the spectra
lying between the minus 10 dB times. This LMA spectrum was also reported to the controlling
computer, along with the time interval between the minus 10 dB times.

Spectral Normalization

Many things affect helicopter sound emissions and the transmission of those sounds to listeners on
the ground. Environmental conditions (e.g., temperature, wind, etc.) typically vary from test to test and
from run to run in any given set of measurements. The precise flight speed, altitude, and flight path also
vary between flights within the same operational category. However, the spectra obtained from these
measurements should be relatively free from the effects of nonstandard environmental conditions or non-
ideal flight along the target track; it should represent a true measure of the noise emissions of a particular
helicopter operating within some standard set of conditions, environment, and distance. The Federal
Aviation Association (FAA) regulations® for noise certification of fixed-wing aircraft provide guidelines

% Federal Aviation Regulatinns, Part 36 Noise Standards, "Aircraft Type and Airworthiness Certification” (U.S. Department of
Transportation, June 1974).
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for adjusting a spectrum from measurement conditions to “standard” conditions. Many of the procedures
outlined in that document have been followed in developing helicopter source spectra for this research.
Where possible, the FAR Part 36 requirements have been met or exceeded; however, some extensions to
the standard were necessary to obtain reliable results. For example, the guidelines specify that the analysis
equipment for noise levels have an operating frequency range of 50 Hz to 10 kHz, but the main blade
passage frequency of the OH-58D, thus most of its acoustic energy, lies below 50 Hz.

Compensation for nonideal measurement and flight conditions was made with a simple sound

propagation model. In this model, the sound pressure at a particular frequency is assumed to decrease
with distance from a point source of sound, according to:

peexp(-oyr)/r [Eq 4]

the molecular sound absorption coefficient at frequency f
the distance between source and field points.

where o
r

The molecular absorption coefficient for air depends on the frequency of the sound waves and on the
temperature, relative humidity, and pressure of the air.

As implemented, this model was applied to the maximum spectrum received by the microphone.
It was assumed that the received spectrum was emitted by the helicopter at the instant it passed through
the point of closest approach to the microphone. The positioning information obtained from camera
photographs was used to locate a flight path parallel to the target flight path, but offset vertically and
horizontally. The closest point of approach for each microphone was determined from the offset path, and
the distance to that path was used as the slant range (r) in the above relation.

To standardize any measured spectrum, the effects of propagation under measurement conditions

must be "removed” and the effects of propagation under standard conditions must be "applied” to the
spectrum. Using this procedure, the sound pressure per band in the i 1/3-octave band is given by:

P, = p,(.rr_,}xp(air—a’ir’) (Eq 51

the slant distance
the molecular absorption coefficient for the i 1/3-octave band.

where r
ai

In the above, all of the primed variables refer to quantities at standard conditions, and the unprimed
quantities refer to measurement conditions.

Note that this sound propagation model does not provide for any reflections or sound absorption by
the ground. Also missing from the above model are any effects on sound propagation due to atmospheric
reiraction or atmospheric turbulence. At the short distances used in these source measurements, it is not
likely that atmospheric refraction or turbulence has a great effect on sound pmpagation. The reflection
properties of the ground are fairly significant for individual frequency components of sound waves, but
are less significant for 1/3-octave, or other broadband measures of acoustic energy. At longer distances,

14




such as those used in predicting noise in communities around airports, the ground reflection, atmospheric
refraction, and turbulence become extremely important.

The only corrections to the measured spectra for nonideal conditions involve the propagation of
sound from the helicopter to the microphone. No attempt was made in this research to assess the changes
in acoustic power output by the helicopter due to the differences between the test environment and the
standard environment. Such differences might include changes in heading or attitude due to flying in the
presence of wind or changes in blade pitch to provide the same thrust at higher temperatures.
Furthermore, throughout each test, the helicopters became lighter as they bumed fuel. The fuel remaining
in the tanks was logged for each flight, but no compensation was made in the analysis for the weight
differences between flights. All of these factors have been considered for future inclusion in the analysis
procedure, but have been ignored in this analysis.

A large sample size may justify ignoring environmental effects on source emissions in some cases.
For instance, a given factor may either enhance or reduce the sound power, depending on the environment,
but when a large number of tests are performed, the average contribution may be small due to the variety
of conditions in the sample. A potentially useful method for assessing the importance of environmental
effects of the gathered data is to examine the scatter in the data. One measure of the scatter is the energy
variance of the sound levels, given by:

i {10 L0 L/10}2 [Eq 6]

o - L
N i3

The size of the scauter may be compared with the energy average level of the data by expressing the
energy variance in decibels, via:

Lo = 10 log,, o (Eq 7]

If, for instance, the value of Ly, is significantly below L,y (i.c., 10 dB or more) the scatter in the data
do not significantly affect the estimate of L,y. Of course, it is still possible that the environmental factors
were left unaccounted for by the propagation model.
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4 RESULTS

One-third Octave Spectra

The normalized, flat-weighted 1/3-octave band spectra for each helicopter operation are shown in
Figures 3A through 3D. The spectra were taken from the 1/2-second during the peak A-weighted level
for dynamic operations and from a time-averaged equivalent sound level for the static operations (Figure
3C). Note the strong peaks in level at band 15 (32 Hz) and band 23 (200 Hz) in Figures 3A and 3B.
These are mainly due to the noise generated by the main and tail rotors. Also note that these peaks are
present in the IGE and OGE hovers (Figure 3D) but the main blade rotation does not produce a peak at
band 15 for the zero-pitch idle. All static operations (Figure 3D) produced additional significant energy
at band 20 (100 Hz). The data for Figures 3A through 3D are tabulated in Appendix B.

A-weighted Sound Levels Versus Distance

The maximum A-weighted sound pressure level versus distance curves are given in Figures 4A
through 4C. In each figure, the maximum A-weighted sound level is predicted at a range of distances
between 100 ft slant range and 50000 ft slant range. These curves were calculated from measured 1/3-
octave data, using the procedure outlined in an earlier USACERL Technical Report.®

The calculation procedure is the same as that described in Chapter 3 of this report.

The A-weighted sound exposure level is plotted versus distance in Figures SA through 5C. The A-
weighted equivalent level is plotted versus distance in Figure 6 for zero-pitch idle, IGE and OGE hovers.
Tabulated values for the graphs in Figures 4A through 4C, 5A through SC and 6 arc given in Appendix C.

Sound Exposure Lievel Versus Speed

Figure 7 shows the variation of the ASEL and ALMX with increasing helicopter speed. The ASEL
is actually very constant with respect to speed, with only a 2.1 dB difference (when normalized to 250
ft) between the quietest and the noisiest events. ALMX increases monotonically with helicopter speed,
since it is independent of the duration of the flyover.

* R. Raspet. M. Kief, and R. Daniels, Prediction and Modeling of Helicopter Noise, Technical Report N-186/ADA145764
(USACERL, August 1984).
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Slant Distance (ft)

Figure SA. ASEL Versus Slant Distance for a Level Flyover at 300 ft.
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Slant Distance (ft)

Figure 5B. ASEL Versus Slant Distance for a Level Flyover at 1000 ft.
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5 SUMMARY

Noise emission data were gathered in 8 sets of up to 31 helicopter operations. These data were then
reduced, analyzed, and normalized to 250 ft for use in noise maps. The ASEL versus distance curves for
the OH-58D were then developed.

METRIC CONVERSION TABLE

linn. = 254 mm
1ft = 0305m
Imi = 1.61km
lknot = 0514m/s
Inmi = 1.853km
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Pilot’s Log for OH-58D
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APPENDIX B:

One-third Octave Band Data Normalized to 250 f
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OKTS
OKTS

oh58d IDL LITE OFT

REFERENCE SLNT 250FT

AVGN 40

AVG ALEQ 720

AVG 1/3-OCTAVE BANDS 0-43, 3
569 642 682 709 781 788 820
804 789 786 761 776 758 736
695 667 679 664 651 635 625

588 589 603 627 629 629 0
0 0 0 0

END
oh58d IGE LITE 2FT OKTS
REFERENCE SLNT 250FT OKTS
AVGN 40
AVG ALEQ 818
AVG 1/3-OCTAVE BANDS 0-43, 3

522 571 642 684 708 742 752
745 745 747 734 852 725 679
734 730 806 749 767 723 702
720 719 729 718 693 671 651
0 0 0 0
END

oh58d LFO LITE 300FT 40OKTS
REFERENCE SLNT 250FT 40KTS
AVGN 165

AVG ALMX 833

AVG ASEL 915

59DEGF 70PCTRH 29.92IN.HG

0 SEC LEQ
813 804 799
743 741 803
615 607 597

0 0 0

S9DEGF 70PCTRH 29.92IN.HG

0 SEC LEQ
773 767 752
797 815 841
706 721 731
613 581 556

59DEGF 70PCTRH 29.92IN.HG

AVG 1/3-OCTAVE BANDS 0-43, MAX 1/2 SEC SLOW AL

576 605 650 683 718 728 737
733 718 711 747 929 799 694
748 784 827 773 789 756 758
744 735 722 712 683 659 646
0 0 0 0
END

oh58d LFQO LITE 300FT 70KTS
REFERENCE SLNT 250FT 70KTS

AVGN 218

AVG ALMX B46

AVG ASEL 910

AVG 1/3-OCTAVE BANDS
570 611 652 684 714
733 725 721 746 920
773 807 846 804 810
749 743 734 725 704

0 0 0 0]
END

741 746
823 711
771 777
680 663

oh58d LFO LITE 300FT 100KTS
REFERENCE SLNT 250FT 100KTS
AVGN 232

AVG ALMX 871

AVG ASEL 926

739 741 736
818 776 747
747 749 751
615 599 599

S59DEGF 70PCTRH 29.92IN.HG

0-43, MAX 1/2 SEC SLOW AL

749 751 746
806 783 770
759 763 756
634 611 608

59DEGF 70PCTRH 29.92IN.HG

AVG 1/3-OCTAVE BANDS 0-43, MAX 1/2 SEC SLOW AL
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555 613 659 687 704 738 731 742 743 743
746 765 736 758 922 873 769 811 802 801
817 845 880 844 835 798 817 791 790 782
774 764 748 736 720 695 677 647 621 606
0 0 0 0
END

oh58d4 LFO LITE 300FT 120KTS
REFERENCE SLNT 250FT 120KTS 59DEGF 70PCTRH 29.92IN.HG
AVGN 170
AVG ALMX 877
AVG ASEL 931
AVG 1/3-OCTAVE BANDS 0-43, MAX 1/2 SEC SLOW AL
550 601 649 670 698 719 728 735 725 744
726 762 734 784 949 920 791 822 815 812
810 831 879 844 840 804 821 800 799 791
782 772 755 740 724 699 678 653 631 617
0 0 0 0
END

oh58d LFO LITE 1000FT 70KTS
REFERENCE SLNT 250FT 70KTS O59DEGF 7O0PCTRH 29.92IN.HG
AVGN 77
AVG ALMX 867
AVG ASEL 934
AVG 1/3-OCTAVE BANDS 0-43, MAX 1/2 SEC SLOW AL
632 677 721 755 768 796 806 801 805 811
806 799 785 774 931 837 747 786 790 821
882 887 871 830 858 811 802 795 787 775
758 746 738 730 707 681 660 629 0 0
0 0 0 0
END

oh58d LFO LITE 1000FT 100KTS
REFERENCE SLNT 250FT 100KTS 59DEGF 70PCTRH 29.92IN.HG
AVGN 74
AVG AIMX 861
AVG ASEL 926
AVG 1/3-OCTAVE BANDS 0-43, MAX 1/2 SEC SLOW AL
622 646 716 760 767 794 817 793 793 796
781 794 777 769 909 879 774 746 767 803
771 789 855 785 838 795 790 790 775 769
757 752 746 736 729 711 700 677 658 0
0 0 0 0
END

oh58d LND LITE 300FT 40KTS

REFERENCE SLNT 250FT 40KTS 59DEGF 70PCTRH 29.92IN.HG
AVGN 59
AVG AILMX 878
AVG ASEL 958
AVG 1/3-OCTAVE BANDS 0-43, MAX 1/2 SEC SLOW AL

558 619 644 685 697 735 731 751 740 734

740 728 711 761 929 798 718 839 840 864

786 774 852 772 818 791 776 786 794 805

796 785 774 759 731 710 692 667 664 0
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0 0 0 0
END

oh58d OGE LITE 50FT OKTS

REFERENCE SLNT 250FT OKTS 59DEGF 70PCTRH 29.92IN.HG

AVGN 40

AVG ALEQ 890

AVG 1/3-OCTAVE BANDS 0-43, 30 SEC LEQ
533 603 643 688 721 741 744 743 752 744
749 754 735 735 871 738 690 804 832 864
733 729 829 765 803 772 764 792 813 827
811 793 790 766 747 720 695 657 625 595
584 0 0 0

END

oh58d TKF LITE 300FT 4O0OKTS
REFERENCE SLNT 250FT 40KTS 59DEGF 70PCTRH 29.92IN.HG
AVGN 65
AVG ALMX 861
AVG ASEL 924
AVG 1/3-OCTAVE BANDS 0-43, MAX 1/2 SEC SLOW AL
548 608 664 693 712 739 766 756 752 748
735 738 740 730 862 730 690 792 816 850
749 750 818 774 799 757 737 761 775 800
783 766 756 743 711 683 658 622 592 575
581 0 0 0
END

50




APPENDIX C:

Sideline Decay Predictions
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oh584 IDL LITE OFT OKTS

REFERENCE SLNT 250FT OKTS 59DEGF

AVGN 40

ALEQ SIDELINE DECAY 100FT-50000FT
803 783 762 741 720 698 676 654 631
584 559 534 507 480 453 .425 397 369
313 285 258 230 201 174 143 111

END

oh58d4 IGE LITE 2FT OKTS

REFERENCE SLNT 250FT OKTS 59DEGF

AVGN 40

ALEQ SIDELINE DECAY 100FT-50000FT
901 880 860 839 818 797 775 754 732
686 662 637 611 585 557 529 499 469
406 375 343 312 281 250 217 185

END

oh58d LFO LITE 300FT 40KTS

REFERENCE SLNT 250FT 40KTS 59DEGF

AVGN 165

AIMX SIDELINE DECAY 100FT-50000FT
915 894 874 853 832 811 790 769 747
702 679 655 631 605 579 551 522 493
430 398 365 332 298 264 228 192

ASEL SIDELINE DECAY 100FT-50000FT
973 958 944 929 915 900 885 869 853
821 803 786 767 747 727 705 683 659
609 582 555 528 500 472 443 412

END

oh58d LFO LITE 300FT 70KTS

REFERENCE SLNT 250FT 70KTS 59DEGF

AVGN 218

ALMX SIDELINE DECAY 100FT-50000FT
927 907 887 866 845 824 803 782 760
715 692 668 644 619 593 565 537 509
448 417 385 352 319 285 249 212

ASEL SIDELINE DECAY 100FT-50000FT
968 953 939 924 910 895 880 864 848
816 799 781 762 743 723 702 680 657
608 583 557 531 503 475 445 414

END

oh58d LFO LITE 300FT 100KTS

REFERENCE SLNT 250FT 100KTS 59DEGF

AVGN 232

AILMX SIDELINE DECAY 100FT-50000FT
952 932 912 891 871 850 829 807 786
742 719 696 67z 647 621 595 568 539
480 449 418 386 353 319 284 247

ASEL SIDELINE DECAY 100FT-50000FT
984 969 955 940 926 911 896 881 865
833 816 799 781 762 742 722 701 678
631 606 581 555 528 500 471 440

END
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oh58d LFO LITE 300FT 120KTS

REFERENCE SLNT 250FT 120KTS 59DEGF

AVGN 170

ALMX SIDELINE DECAY 100F1 "OO0OOFT
959 938 918 8v7 877 856 t '5 813 792
748 725 701 677 652 627 600 572 544
483 452 419 386 353 318 283 245

ASEL SIDELINE DECAY 100FT-50000FT
989 974 960 945 931 916 901 886 870
838 821 803 785 767 747 726 704 682
633 608 581 555 527 498 469 437

END

oh58d LFO LITE 1000FT 70KTS

REFERENCE SLNT 250FT 70KTS 59DEGF

AVGN 77

AIMX SIDELINE DECAY 100FT-50000FT
949 928 908 887 867 846 825 804 783
739 717 694 670 646 621 596 570 542
486 457 426 396 364 332 299 264

ASEL SIDELINE DECAY 100FT-Z0000FT
991 977 963 948 934 919 904 889 874
842 825 809 791 773 754 725 714 693
649 625 601 577 551 525 497 469

END

oh58d LFO LITE 1000FT 100KTS

REFERENCE SINT 250FT 100KTS 59DEGF

AVGN 74

ALMX SIDELINE DECAY 100FT-50000FT
942 922 902 881 860 839 818 797 775
730 707 683 658 633 607 580 552 523
462 430 397 363 328 292 255 216

ASEL SIDELINE DECAY 10NFT-50000FT
934 970 955 940 926 911 896 880 864
831 814 797 778 759 739 718 696 673
624 597 571 543 514 484 452 419

END

uli58d LND LITE 300FT 40KTS

REFERENCE SLNT 250FT 40KTS 59DEGF

AVGN 59

ALMX SIDELINE DECAY 100FT-50000FT
960 940 919 898 878 857 835 814 792
747 723 699 674 647 620 591 561 530
463 429 394 360 326 292 257 223

ASEL SIDELINE DECAY 100FT-50000FT
10161002 987 972 ©58 942 927 912 896
B63 845 827 808 788 766 744 720 694
640 611 582 554 526 498 469 441

END

oh58d OGE LITE SOFT OKTS

REFERENCE STNT 250FT OKTS 59DEGF
AVGN 40
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770
514

854

658

70PCTRH 29.92IN.HG

761
515

858

071
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753
493

848

649
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770
497

880
667
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ALFQ SIDELINE DECAY 100FT-50000FT
971 951 931 910 889 868 847 825 803
758 734 709 684 657 629 600 568 535
463 425 386 348 311 275 240 206

END

oh58d TKF LITE 300FT 40KTS

REFERENCE SINT 250FT 40KTS 59DEGF

AVGN 65

AIMX SIDELINE DECAY 100FT-50000FT
943 923 902 882 861 840 819 797 775
730 706 682 657 630 603 574 543 511
443 407 371 336 301 267 233 198

ASEL SIDELINE DECAY 100FT-50000FT
982 968 953 938 924 909 893 878 862
829 811 793 774 753 732 709 684 658
601 572 542 513 484 456 427 399

END

54

781

500

70PCTRH 29.92IN.HG

753
478

846
630




Chief of Engineers
ATTN: CEMP-CE
ATTN: CEMP-EA
ATTN: CEMP-EI (2)
ATTN: CEMP-ZA
ATTN: CEMP-ZM (2)

HQ USAF/LEEEU 20332

US Army Europe
ODCS/Engineer 09014
ATTN: AEAEN-FE

ATTN: AEAEN-ODCS

AMC 22333
ATTN: AMCEN-A

Fort Belvoir, VA 22060
ATTN: Water Resource Center
ATTN: CECC-R
ATTN: NACEC-FB

Picatinny Arsenal 07801
ATTN: Library

US Military Academy 10996
ATTN: Facilities Engineer
ATTN: Dept of Geography &
Environmental Engrng
ATTN: MAEN-A

Naval Air Systems Command 20360
ATTN: Library

Litde Rock AFB 72099
ATTN: 314/DEEE

Aberdeen PG, MD 21010
ATTN: Safety Office Range Safety Div
ATTN: US Army Ballistic Res Lab (2)
ATTN: ARNG Operating Activity Ctr
ATTN: Human Engineer Lab

Edgewood Arsenal, MD 21010
ATTN: HSHB-MO-B

Ft. Belvoir, VA 22060
ATTN: NACEC-FB

NAVFAC 22332
ATTN: Code 2003

This publication was reproduced on recycled paper.

ENA Team Distribution

Naval Surface Weapons Center 22448
ATTN: N-43

Ft. McPherson, GA 30330
ATTN: AFEN-FEB

US Army Aeromedical Res Lab 36362
ATTN: SGRD-UAS-AS

USAWES 39180
ATTN: WESSEN-B
ATTN: Soils & Pavements Lab
ATTN: C/Structures
Wright-Patterson AFB, OH 45433
ATTN: AAMRL/BB
ATTN: AAMRL/BBE

Ft. Monmouth 07703
ATTN: AMSEL-EW-MD

WASH DC 20410
ATTN: Housing & Urban Dev (2)

Nat’l Institute of Standards & Tech 20899
ATTN: Force & Acoustics Group

Department of Transportation
ATTN: Library 20590

Naval Undersea Center, Code 401 92132
Bureau of National Affairs 20037
Building Research Board 20418
Trensportation Research Board 20418
Federal Aviation Administration 20591

AVSCOM 63120-1798
ATTN: SFAE-AV-ASH

38
+47
12/90




